- 1. Paetzel *et al.* determined the structure of wildtype (WT) and mutant C3 domains of Cardiac Myosin Binding Protein C (cMyBP-C). The WT domain contains an arginine at position 502, while the mutant contains tryptophan at position 502.
 - a. Fill in the chemical structure of the WT and mutant versions of cMyBP-C at position 502.

b. Indicate the chemical properties of arginine and tryptophan.

Property	R	W
Hydrophobic		
Hydrophilic		
Basic		
Acidic		
Hydrogen Bond Donor		
Hydrogen Bond Acceptor		
Aromatic		

c. What other amino acids substitutions at position 502 may have similar overall characteristics as the tryptophan substitution studied by Paetzel *et al.*

- 2. Paetzel *et al.* studied cMyBP-C in a solution containing sodium phosphate buffer and sodium chloride. Given jars of solid:
 - Sodium phosphate monobasic dihydrate (NaH₂PO₄•2H₂O; acidic form; MW 156.01 g/mole; pKa 7.00)
 - Sodium phosphate dibasic heptahydrate (Na₂HPO₄•7H₂O; basic form; MW 268.07 g/mole; pKa 7.00)
 - Sodium chloride (NaCl; MW 58.44 g/mole)

Describe how to prepare 1 L of solution at pH 6.5 containing:

- 0.500 mole/L total phosphate
- 1.000 mole/L total chloride

3. The following sub-sequences as part of the larger cMyBP-C gene were used in the structural studies of Paetzel *et al*.

```
[WT] 5'-G ACC TTC AAA TAC CGG TTC AAG AAG GAC GG-3' [R502W] 5'-G ACC TTC AAA TAC TGG TTC AAG AAG GAC GG-3'
```

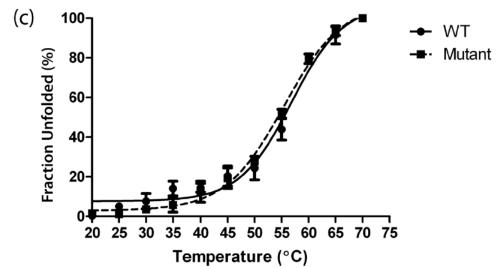
The table below contains the standard genetic code:

Second letter

		U	С	Α	G	
First letter	U	UUU } Phe UUA } Leu UUG }	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC Trp UGG Trp	U C A G
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAA GIn CAG	CGU CGC CGA CGG	Thire
	Α	AUU } IIe AUA AUA AUG } Met	ACU ACC ACA ACG	AAU AAC AAA AAG Lys	AGU Ser AGA Stop AGG Stop	Third letter
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA GAG GIU	GGU GGC GGA GGG	U C A G

When the WT and R502W genes (including the sub-sequences shown above) underwent the processes of DNA replication, transcription, and translation; very few differences between each of these processes existed when comparing WT to the R502W mutant. List the differences in the processes of DNA replication, transcription, and translation when comparing cells producing the WT protein to cells producing the R502W mutant protein.

4.	Open the structures of the WT (2MQ0) and R502W (2MQ3) mutant proteins in PyMol. Under actions
	generate a formal charge estimate for each protein.


a.	What is	the	formal	charge	of the	WT	protein
----	---------	-----	--------	--------	--------	----	---------

- b. What is the formal charge of the R502W mutant protein?
- c. Explain this observation.

5. Several mutations in cMyBP-C are observed to lead to the hypertrophic cardiomyopathic pathology. Which of the following mutations would alter the protein surface chemistry on the same side of the protein as the R502W mutation and thus possibly have the same pathogenic mechanism?

R458H	G490R	R495G	K504(deletion)
G507R	G23W	E542Q	

- 6. The melting temperature (Tm) for a protein is the temperature at which the concentration of folded protein is equal to the concentration of unfolded protein.
 - a. What is the Tm of the WT protein?
 - b. What is the Tm of the mutant protein?

c. Given the Paetzel *et al.* structures, why is it not so surprising that the R502 to W502 mutation does not have a significant effect on the secondary and tertiary stability of the folded protein?

d. Given the Paetzel *et al.* structures, is alteration of secondary, tertiary, or quaternary protein structure proposed to result in the hypertrophic cardiomyopathic pathology (HCM) associated with the arginine to tryptophan primary structure mutation? Explain.